Wasp predation and wasp-induced hatching of red-eyed treefrog eggs.
نویسنده
چکیده
Eggs often suffer high levels of predation and, compared with older animals, embryos have few options available for antipredator defence. None the less, hatchlings can escape from many predators to which eggs are vulnerable. I studied early hatching as an antipredator defence of red-eyed treefrog embryos, Agalychnis callidryas, in response to egg predation by social wasps (Polybia rejecta). Red-eyed treefrogs attach their eggs to vegetation overhanging water, where they are exposed to arboreal and aerial predators. Wasps attacked half the egg clutches and killed almost a quarter of the eggs I monitored at a natural breeding site in Panama. Hatching tadpoles fall into the water, where they face aquatic predators. As predicted from improved survival of older hatchlings with aquatic predators, most undisturbed eggs hatched relatively late. However, many younger embryos directly attacked by wasps hatched immediately. Embryos attacked by wasps hatched as much as a third younger than the peak undisturbed hatching age, and most hatching embryos escaped. Thus hatching is an effective defence against wasp predation, and plasticity in hatching stage allows embryos to balance risks from stage-specific egg and larval predators. Wasp-induced hatching is behaviourally similar to the snake-induced hatching previously described in A. callidryas, but occurs in fewer eggs at a time, congruent with the scale of the risk. Individual embryos hatch in response to wasps, which take single eggs, whereas whole clutches hatch in response to snakes, which consume entire clutches. Embryos of A. callidryas thus respond appropriately to graded variation in mortality risks. Copyright 2000 The Association for the Study of Animal Behaviour.
منابع مشابه
Egg-killing Fungus Induces Early Hatching of Red-eyed Treefrog Eggs
Pathogens can cause substantial mortality of amphibian eggs. If the timing of hatching is phenotypically plastic, embryos could escape from otherwise lethal infections by hatching early. We tested this with the arboreal eggs of red-eyed treefrogs, Agalychnis callidryas. A filamentous ascomycete (Dothideales: Phaeosphaeriaceae) was present on ;7% of egg clutches collected from a pond in the rain...
متن کامل"How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs" (2005), by Karen Warkentin
In ?How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of RedEyed Treefrogs? (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas [5], can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed treefrogs to alter their ha...
متن کاملFlexible information sampling in vibrational assessment of predation risk by red-eyed treefrog embryos.
Prey assessing risk may miss cues and fail to defend themselves, or respond unnecessarily to false alarms. Error rates can be ameliorated with more information, but sampling predator cues entails risk. Red-eyed treefrogs have arboreal eggs and aquatic tadpoles. The embryos use vibrations in snake attacks to cue behaviorally mediated premature hatching, and escape, but vibrations from benign sou...
متن کاملPlastic Hatching Timing by Red-Eyed Treefrog Embryos Interacts with Larval Predator Identity and Sublethal Predation to Affect Prey Morphology but Not Performance
Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a...
متن کاملRisk-induced hatching timing shows low heritability and evolves independently of spontaneous hatching in red-eyed treefrogs.
Plasticity in the timing of transitions between stages of complex life cycles allows organisms to adjust their growth and development to local environmental conditions. Genetic variation in such plasticity is common, but the evolution of context-dependent transition timing may be constrained by information reliability, lag-time and developmental constraints. We studied the genetic architecture ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Animal behaviour
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2000